Image Formation Model Guided Deep Image Super-Resolution
نویسندگان
چکیده
منابع مشابه
A Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملDeep Network Cascade for Image Super-resolution
In this paper, we propose a new model called deep network cascade (DNC) to gradually upscale low-resolution images layer by layer, each layer with a small scale factor. DNC is a cascade of multiple stacked collaborative local auto-encoders. In each layer of the cascade, non-local self-similarity search is first performed to enhance high-frequency texture details of the partitioned patches in th...
متن کاملSuper-Resolution with Deep Adaptive Image Resampling
Deep learning based methods have recently pushed the state-of-the-art on the problem of Single Image SuperResolution (SISR). In this work, we revisit the more traditional interpolation-based methods, that were popular before, now with the help of deep learning. In particular, we propose to use a Convolutional Neural Network (CNN) to estimate spatially variant interpolation kernels and apply the...
متن کاملDeep Image Super Resolution via Natural Image Priors
Single image super-resolution (SR) via deep learning has recently gained significant attention in the literature. Convolutional neural networks (CNNs) are typically learned to represent the mapping between low-resolution (LR) and highresolution (HR) images/patches with the help of training examples. Most existing deep networks for SR produce high quality results when training data is abundant. ...
متن کاملFormation of Super-Resolution Image: A Review
The principle of image enhancement is to improve the interpretability of information contained in the image for human perception or to provide a more suitable input for automated image processing systems. Many images like medical images, satellite images, aerial images and natural images suffer from contrast and noise issues. It is necessary to enhance the contrast and remove the noise to incre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i07.6853